返回列表 回復 發帖

[IQ題] 这三个数分别是什么?

有3个正整数,任意两个相乘加1,都是第三个的整数倍,这三个数分别是多少?
, s0 ~; H% ^' i2 X2 ~5 o! Z+ G公仔箱論壇别猜答案,会算的给出过程.
另外,答案没有在题目里直接公布,不知道怎么隐藏,呵呵,所以只好先看看有没有人会了
是1 2 3
, H5 G! d& M. g$ {& u& M+ B5 b因为1的以外的所有正整数都是它的整数倍
好多答案啊``无聊的问题``
1 1 1, because any number can have factor of 1. also, only 1 can be true if any random number multiple plus has to be divided by the remaining digit. So, 1 1 1 is my answer.
249还有123
123 and 789?
three 1
123.。。
1 1 1
我列了个复杂的方程,但解不出了。不过如果不是1、1、1,楼主可能得注明是“三个不同的正整数”
111, 789 ... and many many others.
They would be 111 or 123
. r2 V3 L: [# H# Y7 k% MFor 111 would be 1x1+1=2 that is 2 times of 3rd 1+ K$ F# T  u7 O( j4 Z% h6 J" q
For 123tvb now,tvbnow,bttvb2 C; o/ B8 K7 }' I
1x2+1=3 that is 1 time of 35 C. \, D5 \+ ?1 I: A
1x3+1=4 that is 2 times of 2公仔箱論壇2 k- ]; I( @' Y) n5 j* ~
2x3+1=7 thta is 7 times of 1
返回列表